
Теплосчетчик S10H (S1H) Модификация S1H

Техническое описание \$1.D.001 Руководство по эксплуатации \$1.D.003 Паспорт

S/N:_____

ООО «Фирма «СЕМПАЛ Ко ЛТД»: 03062, г. Киев, ул. Кулибина, 11.

Тел.: +38 (044) 3371188, (044) 3551188 +38 (098) 1638888, (050) 1428888

> info@sempal.com www.sempal.com

Система качества фирмы «СЕМПАЛ Ко ЛТД» сертифицирована в соответствии со стандартами ISO 9001:2015, ISO 14001:2015, ISO 45001:2018.

Предостережения:

- Монтаж должен проводиться только квалифицированным, обученным персоналом.
- Нарушение и удаление заводских пломб не допускается, иначе гарантии снимаются.
- Сварка на трубах вблизи счетчика запрещена, на время сварки прибор должен быть демонтирован.
- Расстояние от всех элементов счетчика, включая его кабели, до силовых и высокочастотных кабелей, а также от источников электромагнитных помех, должно быть не менее 50 см.
 - Исключить возможность подтопления вычислителя.
 - Температура окружающего воздуха должна быть от 5 °C до 55 °C;
 - Класс окружающей среды С по EN1434 (промышленное использование).

Содержание

1	Назн	ачение	3
2	Мерь	ы безопасности	3
3	Обще	ее описание	3
	3.1	Конструкция счетчика	5
	3.2	Пломбирование	6
4	Техні	ические характеристики	8
	4.1	Метрологические параметры	8
	4.2	Потери давления	9
	4.3	Варианты поставки	9
	4.4	Электрические параметры	10
	4.5	Особенности конструкции	12
	4.6	Материалы	12
	4.7	Погрешности	13
5	Моде	ель и конфигурация счетчика	14
	5.1	Модель теплосчетчика	14
	5.2	Модель второго канала теплосчетчика (варианта 4, 5)	14
	5.3	Конфигурация счетчика	15
	5.4	Модули связи	16
	5.5	Служебные режимы Setup и Test	18
	5.6	Тарификация	18
6	Габај	оитные размеры	21
	6.1	Электронный блок	21
	6.2	Расходомерные участки DN20DN100 с фланцевым подсоединением	22
	6.3	Расходомерные участки DN15DN40 с резьбовым подсоединением	23
7	VOAAE	ілектность	24
7	KOMI	DIENTHOCIB	
8		гаж	
			25
	Монт	гаж	25 25
	Монт 8.1	таж Требования к монтажу	25 25 25
	Монт 8.1 8.2	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5	25 25 25
	Монт 8.1 8.2 8.3	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе	25 25 26 28
	Moh ¹ 8.1 8.2 8.3 8.4	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам	25 25 26 28 29
	Mohii 8.1 8.2 8.3 8.4 8.5	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП	25 25 26 28 29
	Moh ¹ 8.1 8.2 8.3 8.4 8.5 8.6	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей	25 25 26 28 29 32
	Moh 8.1 8.2 8.3 8.4 8.5 8.6 8.7	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию	25 25 26 28 32 32
8	Moh 8.1 8.2 8.3 8.4 8.5 8.6 8.7	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию	25 25 26 28 29 32 32
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание	25 25 26 29 32 32 34
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание Выполнение измерений	2525262932323434
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание вслитель Выполнение измерений Режимы работы счетчика	2525262932343434
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3	гаж Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание ослитель Выполнение измерений Режимы работы счетчика	252526323234343536
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4	гаж Пребования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам. Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание Вслитель Выполнение измерений Режимы работы счетчика Функции счетчика	252526293234343536
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5	Требования к монтажу	25252629323434353637
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6	Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам. Установка ТСП Укладка кабелей Ввод в эксплуатацию. Обслуживание. Выполнение измерений Режимы работы счетчика Функции счетчика Обработка ошибок Индикатор и клавиатура Меню управления счетчиком	2525262932343435363739
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6 9.7	Требования к монтажу	2525262932343435363939
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6 9.7	Требования к монтажу	252526293234343536373939
8	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание Ослуживание Выполнение измерений Режимы работы счетчика Функции счетчика Функции счетчика Индикатор и клавиатура Меню управления счетчиком Отображение в основном режиме Меню Дополнительные параметры Меню Контроль (Установка)	25252632323434353639394244
9	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Требования к монтажу Подключение компонентов счетчика для вариантов 4 и 5 Расположение РУ в трубопроводе Требования к прямым участкам Установка ТСП Укладка кабелей Ввод в эксплуатацию Обслуживание Слитель Выполнение измерений Режимы работы счетчика Функции счетчика Обработка ошибок Индикатор и клавиатура Меню управления счетчиком Отображение в основном режиме Меню Дополнительные параметры Меню Контроль (Установка) Меню Тарифы	25252632323436373939414644
9	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Требования к монтажу	25252629323434353639394243444648
9	Монт 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Вычи 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 Texhi	Требования к монтажу	25252629323434353639394243444648

10.4 Батарея	49
10.4 Характерные неисправности	
11 Гарантии изготовителя	
12 Хранение, транспортировка, утилизация	
12.1 Упаковка	
12.2 Условия хранения счетчиков:	51
12.3 Утилизация компонентов счетчика:	51
13 Параметры и характеристики составных частей счетчика	
14 Свидетельство о приемке и первичной поверке	52
15 Сведения о вводе в эксплуатацию, ремонтах, перенастройках	53
16 Сведения о периодических поверках	53
Приложение А. Упрощенные схемы узлов учета	54

Список сокращений

РУ - расходомерный участок с ультразвуковыми датчиками расхода

ТСП - термосопротивление платиновое производства фирмы "Семпал"

ДТ – датчик температуры

ДР - датчик расхода

2

1 Назначение

Теплосчетчики S1H служат для измерения тепловой энергии в водяных системах отопления, нагрева, горячего водоснабжения. Счетчики могут быть использованы для измерения энергии, затрачиваемой на охлаждение воды в системах кондиционирования, а также для измерения объемов ГВС и XBC.

Счетчики, в зависимости от варианта исполнения, могут применяться для учета, в том числе коммерческого, количества теплоты в соответствии с действующими правилами учета отпуска и потребления теплоты на промышленных объектах, объектах коммунального хозяйства, в квартирном учете.

Счетчики для закрытых систем соответствуют требованиям Технического регламента. Теплосчетчики для открытых систем соответствуют технической спецификации производителя и Правилам технической эксплуатации тепловых установок и сетей, утвержденным Приказом Министерства топлива и энергетики Украины от 14.02.2007 г. за № 71.

2 Меры безопасности

Конструкция счетчиков соответствует требованиям безопасности в соответствии с ДСТУ 12.2.003. По способу защиты человека от поражения электрическим током теплосчетчики соответствуют классу III, а щиток приборный (при установке счетчика в щиток), в случае его использования, соответствует классу I по ДСТУ 12.2.007.0.

По требованиям пожарной безопасности счетчики соответствуют ГОСТ 12.1.004.

В случае, когда совместно со счетчиками используется оборудование с напряжением питания 220 В, при работе со счетчиками необходимо соблюдать действующие правила по технике безопасности при работе с электроустановками напряжением до 1000 В.

3 Общее описание

Теплосчетчик модификации S1H — это ультразвуковой счетчик тепловой энергии, энергии охлаждения или нагрев/охлаждения. Счетчик предназначен для измерения энергии в водяных системах отопления, нагрева, горячего водоснабжения.

В соответствии с EN1434 счетчик считается гибридным (или компактным). Это означает, что при производстве и первичной поверке счетчик состоит из вычислителя, пары датчиков температуры и узла измерения расхода. Однако, после выпуска его из производства он считается единым теплосчетчиком с неотделяемыми составными частями.

Такими неотъемлемыми частями являются:

- электронный блок (далее по тексту вычислитель)
- расходомерный участок (РУ)
- термопреобразователи сопротивления (ТСП).

То есть, если любая из составных частей будет отсоединена от счетчика и пломбы будут нарушены, счетчик становится непригодным к коммерческому использованию и гарантия на счетчик теряется.

Счетчик использует ультразвуковой принцип измерения расхода. Поочередно излучаются ультразвуковые волны в направлении потока и против, и на основании разности времен прохождения волн определяется текущий объемный расход воды.

Для измерения температуры используется пара калиброванных платиновых термопреобразователей сопротивления Pt1000 (далее – TCП). Калибровочные коэффициенты вносятся в вычислитель, что позволяет измерять температуру и разность температур с очень высокой точностью. Счетчик поставляется с парой калиброванных ТСП. Один из них установлен в расходомерный участок (для DN15...40), второй монтируется при установке счетчика (обычно в шаровый кран).

Измеренная тепловая энергия может отображаться в kWh, MWh, GJ, GCal. Разрядность индикатора – 8 значащих цифр.

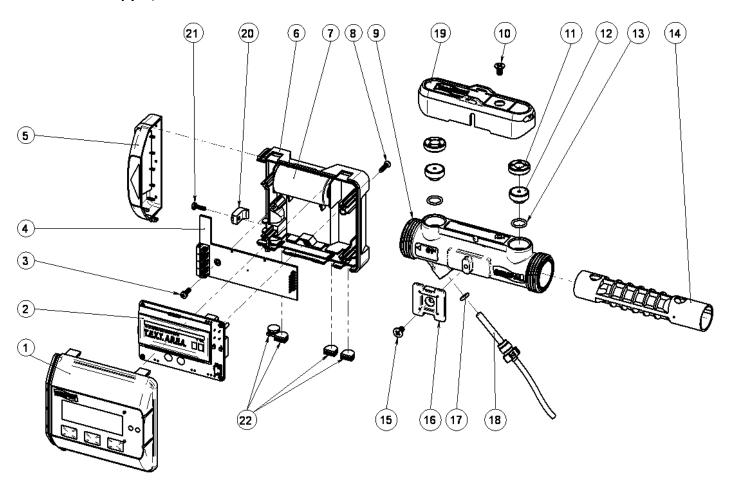
Индикатор никогда не выключается, что позволяет контролировать работу счетчика и снимать показания без нажатия кнопок.

Дополнительные измеряемые и отображаемые параметры (в скобках указаны единицы измерения):

- pacxoд (m³/h или l/h)
- накопленный объем (m³)
- накопленная масса (t)
- тепловая мощность (MW, kW, GCal/h)
- температуры и разность температур

Счетчик имеет 4 тарифных счетчика, которые накапливают информацию о тепловой энергии (нагрев и охлаждение), объеме и массе.

Питание счетчика от встроенной литиевой батареи. Срок службы батареи – 16 лет.

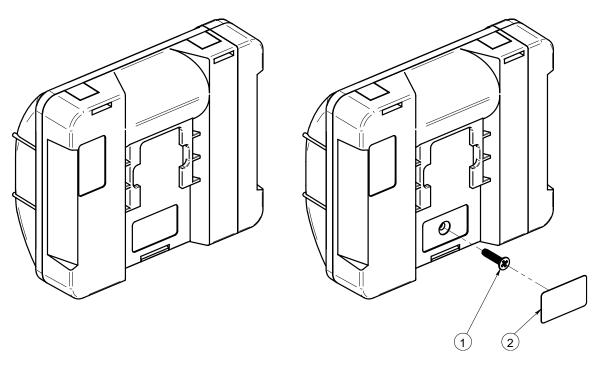

В счетчик может устанавливаться (при производстве) дополнительный модуль связи, который расширяет коммуникационные возможности счетчика (M-Bus, WM-Bus, RS232, Modbus, ...) и позволяет подключать два дополнительных расходомера с импульсным выходом для учета потребления воды.

Кроме того, первый импульсный вход может быть использован в качестве второго канала расхода для вариантов поставки 4 и 5 (п.4.3.4 и 4.3.5).

Кроме встроенных модулей связи съем информации со счетчика может осуществляться через iRDA головку на скорости 9600 бод. Поддерживаются протоколы EN1434 режим A и протокол Sempal.

Настоящее техническое описание предназначено для эксплуатационных служб, установщиков, поверочных и тестирующих организаций, а также для проектных организаций.

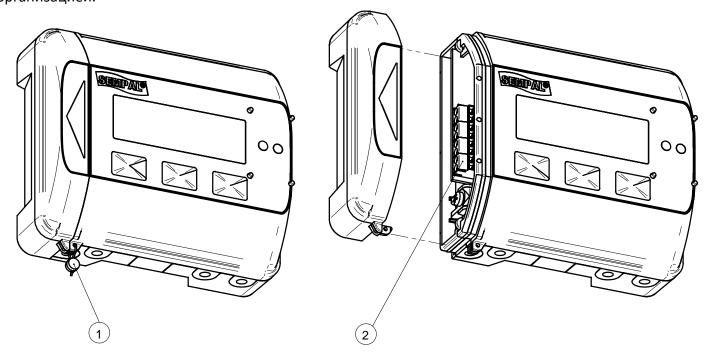
3.1 Конструкция счетчика


Nº	Наименование	Nº	Наименование
1	Верхняя крышка корпуса	12	ДР
2	Плата электроники	13	Уплотнение ДР
3	Винт фиксации модуля связи	14	Измерительная вставка
4	Модуль связи	15	Винт фиксации крепления вычислителя
5	Боковая крышка корпуса	16	Крепление вычислителя
6	Нижняя крышка корпуса	17	Уплотнение ТСП
7	Батарея	18	ТСП
8	Винт фиксации верхней крышки	19	Крышка РУ
9	Корпус расходомерного участка	20	Фиксатор кабеля модуля связи
10	Винт фиксации крышки РУ	21	Винт фиксатора кабеля модуля связи
11	Прижим ДР		

3.2 Пломбирование

3.2.1 Механическое пломбирование корпуса

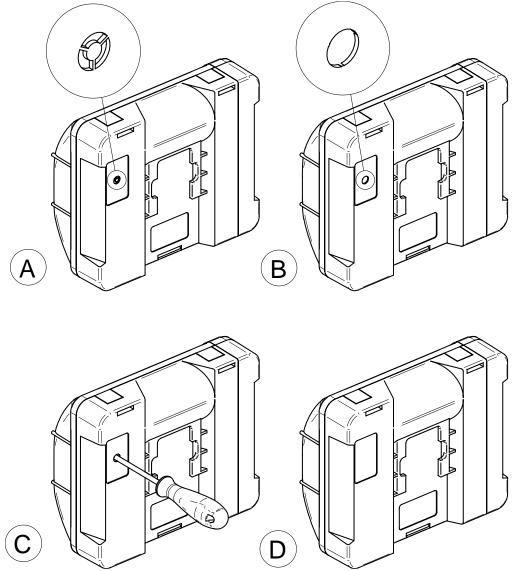
Верхняя крышка корпуса присоединяется к нижней на трех непломбируемых защелках. Для пломбировки используется фиксирующий винт, головка которого защищается пломбирующей наклейкой.


Без выкручивания этого винта открыть корпус можно только сломав защелки.

1 – фиксирующий винт, 2 – пломбирующая наклейка

При поврежденных защелках или поврежденной пломбирующей наклейке прибор не может использоваться для коммерческого учета и лишается гарантии.

Боковая крышка доступа к контактам модуля связи пломбируется принимающей прибор на учет организацией.


1 – пломбировка, 2 – контакты подключения модуля связи

3.2.3 Переход в режимы Установка (Setup) и Поверка (Test).

Режим **Setup** используется для начальной настройки прибора, режим **Test** - для его периодической поверки.

Вход в режим Установка (Setup) не требует последующего проведения поверки прибора.

Переход в эти режимы производится по нажатию специальной кнопки, расположенной на нижней крышке корпуса. После выпуска она закрыта цельной пластиковой перемычкой. Доступ к ней возможен только вскрыв эту перемычку. При поверке эта перемычка заклеивается пломбирующей этикеткой.

А – вид перемычки при выпуске, В – вид с выломанной перемычкой,

С – нажатие кнопки (диаметр отверстия 3 мм), D – установленная пломбирующая наклейка

4 Технические характеристики

4.1 Метрологические параметры

Диапазон разности температур ФО: 3 К...150 К погрешности

Диапазон измерения температур Θ : -49 °C ...+150 °C - граничные значения, Диапазон разности температур $\Delta\Theta$: 0 К...200 К измеряемые счетчиком

Датчики температуры Pt1000 - EN60751

Нормирование характеристик В соответствии с документами, описанными в п.1

Класс точности класс 2

Окружающая среда класс С по EN1434 (промышленное использование)

Срок службы 16 лет

Наработка на отказ 150000 часов

DN	Тип ВД	qn	qi	qp	qs	qb	Втрата тиску Δр @ qp	Під'єднання ВД	Дов- жина
		[m ³ /h]	[bar]		[mm]				
15	015A	0.003	0.015	1.5	3	5	0.17	G ¾ B	110
15	015C	0.003	0.006	0.6	1.2	3	0.17	G ¾ B	110
	020A	0.003	0.015	1.5	3	5	0.1		
	020C	0.005	0.025	2.5	5	7	0.1	G 1 B	130
20	020D	0.003	0.015	1.5	3	5	0.1		
	020F	0.005	0.025	2.5	5	7	0.1	Фланець DIN 1092	190
	020G	0.005	0.025	2.5	5	7	0.1	G 1 B	190
	025A	0.01	0.035	3.5	7	10	0.08	G 1 ¼ B	160
	025C	0.007	0.035	3.5	7	10	0.08	G 1 ¼ B	160
	025D	0.012	0.06	6	12	15	0.08	G 1 ¼ B	160
25	025F	0.007	0.035	3.5	7	10	0.08	Фланець DIN 1092	
	025G	0.007	0.035	3.5	7	10	0.08	G 1 ¼ B	260
	025E	0.012	0.06	6	12	15	0.1	O 1 /4 B	
	025H	0.012	0.06	6	12	15	0.1	Фланець DIN 1092	
32	032F	0.012	0.06	6	12	15	0.1	Фланець DIN 1092	260
32	032G	0.012	0.06	6	12	15	0.1	G 1 ½ B	200
40	040F	0.02	0.1	10	20	25	0.1	Фланець DIN 1092	300
40	040G	0.02	0.1	10	20	25	0.1	G 2 B	300
50	050F	0.03	0.15	15	30	40	0.12	Фланець DIN 1092	270
65	065F	0.05	0.25	25	50	60	0.12	Фланець DIN 1092	300
80	080F	0.08	0.2	40	80	90	0.12	Фланець DIN 1092	300
100	100F	0.12	0.6	60	120	130	0.12	Фланець DIN 1092	360

qi — нижняя граница расхода. Это наименьший расход, выше которого счетчик работает без превышения его максимально допустимой погрешности

qp — длительный (номинальный) расход. Это наибольший расход, при котором счетчик работает длительное время без превышения его максимально допустимой погрешности

qs — верхняя граница расхода (максимальный расход). Это наибольший расход, при котором счетчик работает ограниченное время без превышения его максимально допустимой погрешности

qn – порог чувствительности – минимальный расход, который может измерить счетчик

qb – граничный расход – максимальный расход, который может измерить счетчик

При расходах меньше минимального (qi) и выше максимального (qs) погрешность измерения расхода не нормируется.

4.2 Потери давления

4.2.1 EN1434 нормирует потерю давления 0.25 bar при расходе qp.

Потери давления при произвольном расходе вычисляются как:

$$\Delta P_c = \Delta P_0 \cdot \left(\frac{q_c}{q_p}\right)^2 \tag{4.1}$$

где: q_c – текущий расход

q_p – номинальный расход

ΔР₀ – потери давления при номинальном расходе

ΔР_С – потери давления при текущем расходе

Например, если потери давления на расходе q_p составляют 0.25 бар, то при расходе q_s (если они в 2 раза выше, чем q_p) потери давления составят 1 бар.

4.2.2 Минимальное давление на выходе РУ должно быть не ниже, чем 1 бар.

4.3 Варианты поставки

В зависимости от модели счетчик может поставляться в вариантах поставки 2, 4 и 5.

Соответствие модели счетчика возможным вариантам поставки:

Обозначение на корпусе	Варианты поставки
S1H	2, 2/1, 2/2
S1H-4	4
S1H-5	5

Особенности вариантов поставки приведены в таблице:

Особенности вариантов	Варианты поставки					
	2	2/1	2/2	4	5	
Количество используемых каналов расхода	1	1	1	2	2	
Установка РУ в «обратке»	1	+	_	-	-	
Использование первого импульсного входа как второго канала рас-	ı	_	_	+	+	
хода						
Использование второго расхода для вычисления тепла	ı	_	_	+	_	
Количество используемых ТСП	2	2	1	2	2	
Использование констант температуры холодной воды	1	-	+	+	-	
Отображение утечки	1	_	_	+	+	

4.3.1 Вариант поставки 2

Это одноканальный счетчик тепла. Для измерения расхода используется только ультразвуковой канал расхода.

Импульсные входы, если подключены, используются только для учета объемов воды, измеряемых внешними расходомерами.

4.3.2 Вариант поставки 2/1

Аналогичен варианту поставки 2, за исключением того, что РУ устанавливается в обратном трубопроводе.

4.3.3 Вариант поставки 2/2

Это одноканальный счетчик тепла, в котором температура обратки задается константой. В качестве температуры обратки (холодной) воды используется две целочисленные константы в диапазоне от 1 до 30. Одна из них задает температуру холодной воды зимой, другая — летом. Переключение между летней и зимней температурами производится по календарю (вводятся даты перехода на зимнюю и летнюю константы), либо вручную (если даты не заданы и константы для лета и зимы разные).

Используемая для вычислений температура обратки архивируется.

Для измерения расхода используется только ультразвуковой канала расхода.

Импульсные входы, если подключены, используются только для учета объемов воды, измеряемых внешними расходомерами.

9

4.3.4 Вариант поставки 4

Двухканальный счетчик тепла. Используется для открытых систем теплоснабжения. Для вычисления тепла используются два канала расхода, два ТСП и введенная константа температуры холодной воды.

Ультразвуковой канал измерения расхода всегда устанавливается на подаче.

Второй канал расхода формируется из внешнего расходомера, являющегося составной частью теплосчетчика, с активным импульсным выходом, устанавливаемым в обратке. Этот расходомер подключается к первому импульсному входу модуля связи. При этом модуль связи должен иметь активный первый импульсный вход, соответственно.

Параметры импульсного выхода расходомера должны согласовываться с параметрами активного импульсного входа используемого модуля связи (см. п.5.4).

Если используется также и второй импульсный вход, он накапливает только объем, измеренный внешним расходомером.

В качестве температуры холодной воды используется две целочисленные константы в диапазоне от 1 до 30. Одна из них задает температуру холодной воды зимой, другая – летом. Переключение между летней и зимней температурами производится по календарю (вводятся даты перехода на зимнюю и летнюю константы), либо вручную (если даты не заданы и константы для лета и зимы разные).

Используемая для вычислений температура холодной воды архивируется.

4.3.5 Вариант поставки 5

Это одноканальный теплосчетчик с контрольным расходомером в обратном трубопроводе (аналогично варианту 4). В качестве второго канала расхода, как и для варианта 4, используется внешний расходомер с импульсным активным выходом.

По второму каналу расхода измеряется только объем и масса. В вычислении тепла он не участвует.

4.4 Электрические параметры

Погрешность вычисления тепла $Ec = \pm (0.1 + 2/\Delta\Theta) \%$

Индикатор Состоит из двух областей:

Основной LCD – 8 значащих разрядов. Работает всегда.

Строка меню – текстовая строка. Работает только при навигации

по меню.

Единицы измерения энергии kWh, MWh, GJ, GCal

Единицы измерения расхода m³/h или l/h

Единицы измерения мощности MW, kW, GCal/h

Архивирование 1680 часов (70 суток), 500 суток, 36 месяцев, 16 лет.

журнал действий пользователя – 100 записей

Часы/Календарь Часы реального времени (уход часов не более 3 сек в сутки), ка-

лендарь с учетом високосных лет, летнее/зимнее время, дата

начала отчетного месяца

Обмен данными через

оптопорт iRDA

Используемые головки - стандарт IEC 62056-21 с максимальной

скоростью не менее 9600 бод, с подавлением эха

- протокол EN1434 для iRDA режим A с CRC (только чтение)

- протокол Sempal – чтение, конфигурирование счетчика.

Модули связи	- проволной M-	Bus. Нагрузка — 1 единица (1.5 мА). EN 1434-3,			
тодули связи		13757-3. Скорость передачи выбирается из ряда			
		400, 4800 и 9600 бод.			
	- <u>RS232</u> . Скорост	ь передачи 9600 бод, 8 бит, контроль четности –			
	None, 1 стоп-бит	. Протокол Sempal.			
		<u>іход</u> . Один активный импульсный выход. Макси-			
		– 100 Гц. Вес импульса и отображаемая инфор-			
	мация настраив	ется. оводной M-Bus). Частота 868 МГц.			
		оводной IVI-виѕ). частота 808 IVII ц. эчи С1. Передача данных 1 раз в 15 секунд.			
	• • • • •	ачи С1. Передача данных 1 раз в 15 секунд. ачи Т1. Передача данных 1 раз в 15 минут.			
	•	Протокол Modbus RTU. Скорость передачи дан-			
		из ряда: 1200, 2400, 4800, 9600, 19200, 38400,			
	56000, 57600, 115200 бод.				
Импульсные входы	Использование і	импульсных входов (до 2-х) возможно только при			
	=	я связи. Используются для учета объема воды			
		пульсными гальванически развязанными выхо-			
	дами.	максимальная частота импульсов – 100 Гц.			
		: нагрузочное сопротивление 680 КОм подклю-			
	=	нию +3 В. Максимальная частота импульсов –			
	1 Гц.	,			
Электромагнитная	Соответствует тр	ебованиям EN1434 класс E1			
совместимость					
Напряжение питания	$3.6^{+0.1}_{-0.3}$ B				
Измерение температуры					
Погрешность измерения темпе-	$Et = \pm (0.5 + 3 \Delta\Theta_{r})$	nin/ΔΘ) %			
ратуры					
Pt1000, двух- или четырехпро-	T1, T2	ΔΘ			

водное подключение Температуры подачи и

"обратки"

Диапазон измерения -49 °С ...+150 °С 0 К...200 К

- a. a.p. a					
Интервал замены	16 лет ¹				
	При использовании модулей связи, частом считывании данных, а				
	также при высокой температуре может потребоваться более				
	частая замена.				

3.6 VDC. 1 литиевый элемент питания типоразмера С

Измерение тепла/холода

Содержание лития 2.5 г

Батарея

- периодичность интегрирования 4 секунды
- длительность навигации по меню 5 минут в день
- считывание почасового архива 1 раз в час (через один из блоков связи)
- считывание текущего состояния 1 раз в минуту (через один из блоков связи)

¹ При следующих условиях работы:

⁻ считывание всей доступной информации через iRDA порт 1 раз в месяц

4.5 Особенности конструкции

Класс за щиты		Температура окружающей среды	Классификация по окружающей среде	
Вычислитель	IP65		Влажность без конденсата	
Расходомерный участок в сборе	IP68	555 °C	Влажность с конденсатом	В помещении

Температура теплоносителя 2...150 °C При температуре теплоносителя ниже 15 °C и выше 90 °C

обязателен настенный монтаж вычислителя (во избежание конденсата и перегрева вычислителя соответственно). Температура теплоносителя зависит от модификации ис-

пользуемого РУ.

Тип теплоносителя Вода

Температура хранения -25...+60 °C (РУ должен быть сухой)

Рабочее давление 16 бар

Испытательное давление 25 бар в течение 1 минуты

Длина кабеля к РУ 1 м (не отсоединяемый)

Длина кабеля к ТСП 1.15, 2, 3 м

(не отсоединяемый, двух- - для DN15...40 (устанавливаемый в РУ)

проводный) - для DN50 и выше (устанавливаемый в трубопровод)

Длина кабеля к ТСП от 5 до 20 м, устанавливаемый в трубопровод

(отсоединяемый, четырех-

проводный)

4.6 Материалы

Смачиваемые части (комбинация материалов зависит от типа РУ):

Корпус РУ CW617N, AISI304

Датчики расхода РЕЕК+30%GF или титан

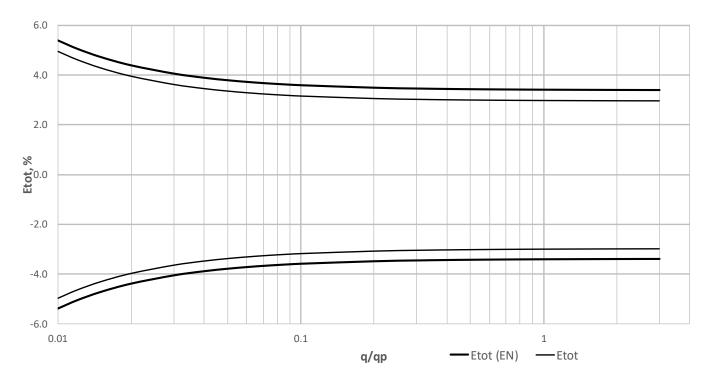
Уплотнители EPDM или биконит

Измерительный участок PES+30%GF

Отражатели AISI 304

Крышка РУ, корпус вычислителя, ABS+PC

настенное крепление


Кабеля Кабель Silicone + PTFE

4.7 Погрешности

4.7.1 Погрешности счетчика вариантов поставки 2, 2/1, 2/2 и 5:

Нормирование погрешности – по EN1434, класс 2

Составляющие погрешности	Нормирование по EN1434	Нормирование для счетчика		
Измерение расхода	$Ef = \pm (2 + 0.02q_p/q) \%$	$Ef = \pm (2 + 0.02q_p/q) \%$		
Вычислитель	$Ec = \pm (0.5 + \Delta\Theta_{min}/\Delta\Theta) \%$	$Ec = \pm (0.1 + 2/\Delta\Theta) \%$		
Измерение температуры	Et = \pm (0.5 + 3 $\Delta\Theta_{min}/\Delta\Theta$) %	Et = $\pm (0.5 + 3 \Delta\Theta_{min}/\Delta\Theta)$ %		
Общая погрешность	Etot = Ef + Ec + Et =	Etot = Ef + Ec + Et =		
	$\pm(3 + 0.02q_p/q + 4\Delta\Theta_{min}/\Delta\Theta)$ %	±(2.6 + 0.02qp/q + 11/ΔΘ) %		

Общая погрешность в сравнении с требованиями по EN1434-1. $\Delta \Theta = 30 \; \text{K}$

4.7.2 Погрешности двухканального счетчика (вариант поставки 4)

Для расходов выше 0.04q_p:

- ± 4 % при ΔΘ от 20 °C (включительно) до 150 °C (включительно);
- ± 5 % при ΔΘ от 10 °C (включительно) до 20 °C;
- ± 6 % при ΔΘ от 3 °C (включительно) до 10 °C.

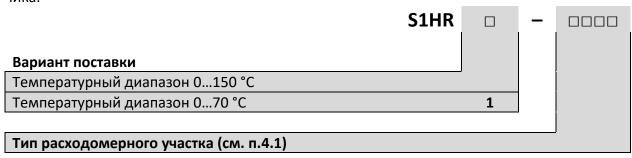
Для расходов 0.04q_р и ниже:

- ± 6 % при ΔΘ от 20 °C (включительно) до 150 °C (включительно);
- ± 7 % при ΔΘ от 10 °C (включительно) до 20 °C;
- ± 8 % при ΔΘ от 3 °C (включительно) до 10 °C.

5 Модель и конфигурация счетчика

Модель счетчика указывается на верхней крышке корпуса прибора.

5.1 Модель теплосчетчика


0.2				
:	S1H		_	
Вариант поставки				
Одноканальный счетчик, вариант поставки 2, 2/1, 2/2				
Двухканальный счетчик, вариант поставки 4		4		
Двухканальный счетчик, вариант поставки 5		5		
Тип расходомерного участка (см. п.4.1)				

Пример модели одноканального счетчика, вариант поставки 2, 2/1, 2/2: **\$1H-020A** Пример обозначения модели двухканального счетчика, вариант поставки 4: **\$1H4-020A** Пример обозначения модели двухканального счетчика, вариант поставки 5: **\$1H5-020A**

5.2 Модель второго канала теплосчетчика (варианта 4, 5)

В качестве второго канала расхода используется расходомер без индикатора и клавиатуры, входящий, как составная часть, в комплектный двухканальный теплосчетчик.

Все метрологические параметры по измерению расхода совпадают с параметрами теплосчетчика.

Пример модели второго канала расхода двухканального счетчика:

- с температурным диапазоном 0...70 °C: S1HR1-020A
- с температурным диапазоном 0...150 °C: S1HR-020A

Этот расходомер оборудован встроенным блоком импульсного выхода. Вес импульса устанавливается при отгрузке в зависимости от максимального расхода, используемого во втором канале РУ из расчета 100 Гц на максимальном расходе по формуле:

$$P_W = \frac{360}{q_S} \tag{5.1}$$

где $- qs - pacxoд, m^3/h$

– Pw – вес импульсов, p/l.

Таблица рассчитанных весов импульсов для максимальных расходов:

Макс. расход (qs), m³/h	Вес импульса, (p/l)	Макс. расход (qs), m³/h	Вес импульса, (p/l)
3	120.00	30	12.000
5	72.000	35	10.286
7	51.429	50	7.200
10	36.000	125	2.880
12	30.000	200	1.800
20	18.000	320	1.125

5.3 Конфигурация счетчика Конфигурация отображается в строке меню на индикаторе прибора. Cfg - \Box - \square – \Box -Модуль связи (п.5.4) Не установлен 00 RS232 10 M-Bus 20 Импульсный выход 30 WM-Bus протокол C1 40 WM-Bus протокол T1 41 RS485 Modbus 50 Импульсные входы в модуле связи Нет импульсных входов 0 Импульсные входы класса IB, IB 1 Импульсные входы класса IC, IB 2 Позиция РУ подача/обратка (п.5.3.1) Подача 1 Обратка 2 Количество ТСП 2 Периодичность интегрирования (п.5.3.2) Период Период измерения интегрирования, сек расхода, сек 0.5 2 1 4 1 2 8 1 3 16 2 4 Система единиц тепла (п.5.3.3) Единицы энергии Единицы мощности GJ MW1 kWh kW 2 MWh MW 3 GCal/h GCal 4 Система единиц расхода (п.5.3.4) m³/h I/h

Тарификация (п.5.3.5)	
Тарификация не используется	0
Р (мощность)	1
Q (расход)	2
dT (разность температур)	3
Т1 (температура подачи)	4
Т2 (температура обратки)	5
Тіте (время)	6
Код региона (п.5.3.6)	

Украина

Конфигурирование счетчика производится при вводе в эксплуатацию посредством программы SmpSetup (работает в Windows7 и выше) или с клавиатуры прибора. Конфигурацию можно изменять только если прибор находится в режиме **Setup**.

Позиция РУ 5.3.1

РУ может быть установлена в подающем или обратном трубопроводах (обратке).

Периодичность интегрирования

Периодичность интегрирования задает интервал времени для вычисления объема, тепла и обновления информации на индикаторе.

Периодичность измерения расхода зависит от периодичности интегрирования.

Периодичность измерения температуры всегда 32 секунды.

5.3.3 Система единиц тепла

Счетчик всегда считает тепло в GJ, пересчет в другие единицы производится только для отображения на индикаторе.

5.3.4 Система единиц расхода

Счетчик всегда считает расход в m³/h, пересчет в другие единицы производится только для отображения на индикаторе.

Объем всегда отображается в m^3 .

В зависимости от выбранных единиц отображения изменяется разрядность индикатора.

Общее количество значащих разрядов индикатора всегда равно 8-ми разрядам. Изменяется только количество цифр после десятичной точки:

			Разр	ядность	индикато	ра (цифр	после то	чки)		
qp, m³/h	MW	kW	CGal/h	kWh	MWh	GJ	GCal	m³	l/h	m³/h
1.5	3	1	3	1	3	3	3	3	0	3
2.5	3	1	3	1	3	3	3	3	0	3

Температура и разность температур всегда отображается с точностью 0.01 °C.

5.3.5 Тарификация

Прибор имеет 4 тарифных ячейки. В зависимости от режима тарификации в ячейках Т1...Т4 сохраняются различные параметры. В любом случае, вне зависимости от режима тарифицируемая величина накапливается в основном сумматоре и дополнительно накапливается в тарифных счетчиках. Более подробно тарификация будет описана ниже (п.5.6).

Код региона

Код региона определяет начальные установки часового пояса, использование летнего времени, и т.д.

5.4 Модули связи

Модуль связи устанавливается в процессе выпуска прибора и изменяться пользователем не может.

5.4.1 Импульсные входы.

Каждый из модулей связи может поставляться как с импульсными входами, так и без них.

Счетчик может поддерживать до 2-х импульсных входов. К каждому из входов может быть подключен дополнительный водосчетчик (расходомер) с импульсными выходами.

Возможны следующие варианты поставки импульсных входов:

	Вход 1	Вход 2
Первый вход активный, второй - пассивный	IC	IB
Оба входа пассивные	IB	IB

Параметры импульсных входов:

активный вход (IC)

Класс импульсного входа по EN1434 ІС (для активного импульсного выхода)

Максимальная частота следования импульсов

Длительность импульса

100 Hz ≥ 4 ms

В случае питания от счетчика:

напряжение	3.6 V
максимальный ток	7 uA
Максимальное напряжение на входе	3.6 V
Напряжение «1»	2 V
Напряжение «0»	0.5 V
Состояние входа при отсутствии расхода	«1»

Выходной каскад расходомера должен быть гальванически изолирован

пассивный вход (IB)

Класс импульсного входа по EN1434	IB
Максимальная частота следования импульсов	1 Гц
Длительность импульса	≥ 100 mc
Резистор нагрузки (подтяжка к напряжению 3 В)	680 КОм

Использоваться должен только с гальванически развязанными контактами

Модуль связи RS232

Использует сигналы TxD, RxD и GND.

Параметры порта:

 Скорость передачи данных
 9600 бод

 Длина данных
 8 бит

 Контроль четности
 None

 Стоп-бит
 1

 Используемый протокол
 Sempal

Модуль связи M-Bus

Нагрузка	1 единица (1.5 мА)
----------	--------------------

 Длина данных
 8 бит

 Контроль четности
 Even

 Стоп-бит
 1

Скорость 300, 600, 1200, 2400, 4800, 9600 бод

Адресация Первичная и вторичная

Модуль связи WM-Bus

Частота	868 МГц
4aClOla	ע וועו אמא

Протокол С1, Частота передачи 1 раз в 15 секунд

Т1, Частота передачи 1 раз в 15 минут

Модуль связи RS485 Modbus

Протокол	Modbus RTU
----------	------------

Скорость передачи данных, бод 1200, 2400, 4800, 9600, 19200, 38400, 56000, 57600, 115200

Контроль четности Even, Odd, None

Стоп-бит 1

Питание Внешнее, постоянного тока нестабилизированное 5...24 В

Терминатор линии 120 Ом, отключаемый

Модуль импульсного выхода

Модуль формирует активный импульсный выход в формате класса выходов OD по EN1434.

Класс выхода по EN1434	OD
Длительность импульса	4 ms ± 1%
Максимальная частота	100 Hz
Напряжение питания (VCC)	3.05.0 V

Напряжение на выходе Выходное сопротивление Потребляемый ток Гальваническая развязка

(VCC - 0.1) V100 Ohm 3 uA есть

Импульсных входов модуль не имеет.

5.5 Служебные режимы Setup и Test

Счетчик имеет два служебных режима – **Setup** и **Test**.

Режим Setup используется для начальной настройки прибора, режим Test - для его периодической поверки.

Вход в эти режимы выполняется с помощью специальной запломбированной кнопки, находящейся на задней крышке прибора. При выпуске из производства эта кнопка закрыта пластиковой перемычкой, которая выламывается при необходимости доступа к кнопке. В дальнейшем это отверстие закрывается пломбирующей наклейкой.

Для входа в режим **Setup** нужно удерживать эту кнопку нажатой в течение интервала времени от 5 до 15 секунд. При этом на индикаторе прибора будет отображаться

Если отпустить кнопку в этот интервал времени, счетчик перейдет в режим **Установка** (Setup).

При дальнейшем удержании кнопки нажатой (от 15 до 30 секунд), индикация на приборе сменится на надпись

LE5L

При отпускании кнопки прибор перейдет в режим Поверка (Test).

Если же продолжать удерживать кнопку, индикатор перейдет в стандартный режим отображения и режим работы прибора изменяться не будет.

Конфигурация счетчика устанавливается перед вводом его в учет. Конфигурирование возможно только в режиме Установка.

При выпуске счетчика устанавливается специальный транспортный режим. Этот режим эквивалентен режиму Установка, но в отличие от него, измерения расхода и температуры проводятся 1 раз в 60 секунд. Индикатор погашен и включается только при нажатии любой кнопки.

5.6 Тарификация

Прибор имеет 4 тарифных счетчика. Каждый тарифный счетчик состоит из сумматора (Т1...Т4) и порога (L1...L4). Логика работы зависит от типа выбранного режима тарификации.

Вне зависимости от типа тарификации данные ВСЕГДА накапливаются в основных счетчиках (тепло, объем, ...) и дополнительно суммируются в тарифных счетчиках в случае, если выполняется условие для соответствующего тарифа.

Пороговые значения задаются в тех же единицах, которые используются для отображения на индикаторе.

При вариантах поставки 4 и 5 тарификация не используется.

5.6.1 Режим тарификации 0

В этом режиме никакая тарификация не используется.

5.6.2 Режим тарификации Р (код в конфигурации 1)

Работает в режиме учета тепла или учета холода (в автоматическом режиме не используется).

В тарифных счетчиках накапливается тепловая энергия.

Тарификация производится по порогам тепловой мощности (нагрев или охлаждение).

P ≤ L1	только основной регистр
L1 < P ≤ L2	Основной регистр и T1
L2 < P ≤ L3	Основной регистр и T2
L3 < P ≤ L4	Основной регистр и T3
P > L4	Основной регистр и Т4

L1<L2<L3<L4

5.6.3 Режим тарификации Q (код в конфигурации 2)

Анализируется объемный расход.

В тарифных счетчиках накапливается тепловая энергия.

	I I
q ≤ L1	только основной регистр
L1 < q ≤ L2	Основной регистр и T1
L2 < q ≤ L3	Основной регистр и Т2
q > L3	Основной регистр и Т3
1	Основной регистр и Т4. Здесь суммируются значения при расходе меньше qi, но больше порога чувствительности

L1<L2<L3

5.6.4 Режим тарификации dT (код в конфигурации 3)

Анализируется модуль $\Delta t = |t1-t2|$ разности температур.

В тарифных счетчиках накапливается тепловая энергия.

Δt ≥ L1	только основной регистр
L2 ≤ Δt < L1	Основной регистр и Т1
L3 ≤ Δt < L2	Основной регистр и Т2
L4 ≤ Δt < L3	Основной регистр и Т3
Δt < L4	Основной регистр и Т4

L1>L2>L3>L4

5.6.5 Режим тарификации Т1 (код в конфигурации 4)

Анализируется температура подачи.

В тарифных счетчиках накапливается тепловая энергия.

При установке РУ в подающем трубопроводе это температура t1, при установке в обратном – это

t2.

t ≥ L1	только основной регистр
L2 ≤ t < L1	Основной регистр и Т1
L3 ≤ t < L2	Основной регистр и Т2
L4 ≤ t < L3	Основной регистр и Т3
t < L4	Основной регистр и Т4

L1>L2>L3>L4

5.6.6 Режим тарификации Т2 (код в конфигурации 5)

Анализируется температура обратки.

В тарифных счетчиках накапливается тепловая энергия.

При установке РУ в подающем трубопроводе это температура t2, при установке в обратном – это

t1.

t ≤ L1	только основной регистр
L1 < t ≤ L2	Основной регистр и T1
L2 < t ≤ L3	Основной регистр и T2
L3 < t ≤ L4	Основной регистр и T3
t > L4	Основной регистр и Т4

L1<L2<L3<L4

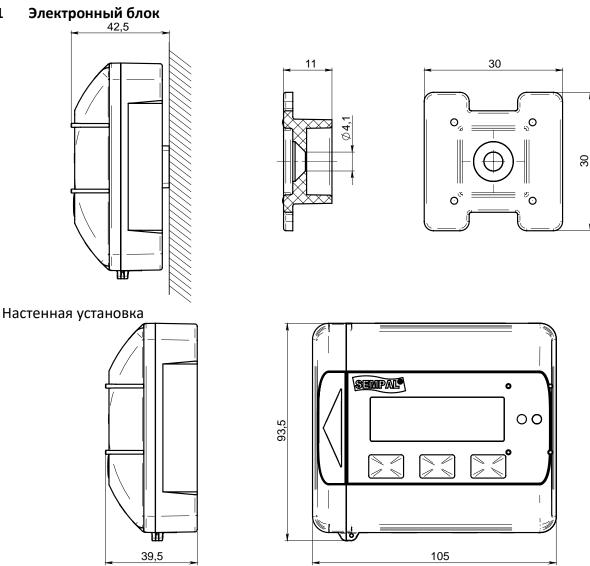
5.6.7 Режим тарификации Time (код в конфигурации 6)

Тарификация по времени суток

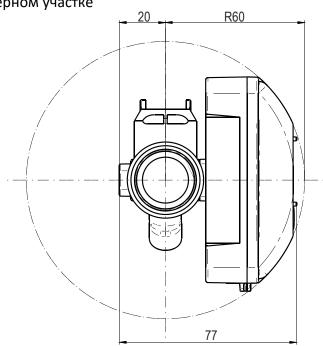
В тарифных счетчиках накапливается тепловая энергия.

В порогах тарифов прописывается время суток – часы и минуты

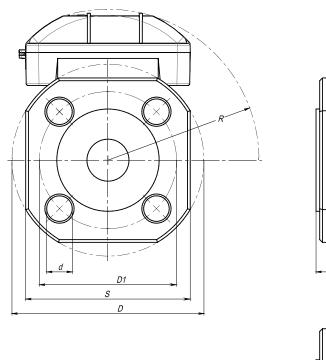
L1 ≤ time < L2	Основной регистр и T1
L2 ≤ time < L3	Основной регистр и Т2
L3 ≤ time < L4	Основной регистр и Т3
L4 ≤ time или time < L1	Основной регистр и Т4

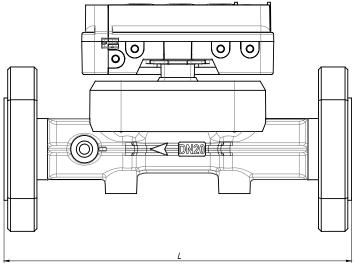

L1<L2<L3<L4

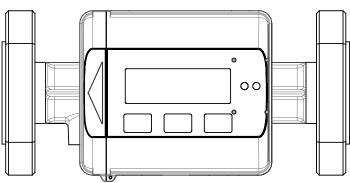
Если какие-то из порогов не заданы, то, если time находится в интервале между максимальным порогом и TT1, то суммируется основной регистр и T4. Например, если не задан порог L3 и L4, то если время больше L2 или меньше L1, суммирование будет в T4.


Максимальное значение времени, которое может быть установлено в L1 = 23:55.

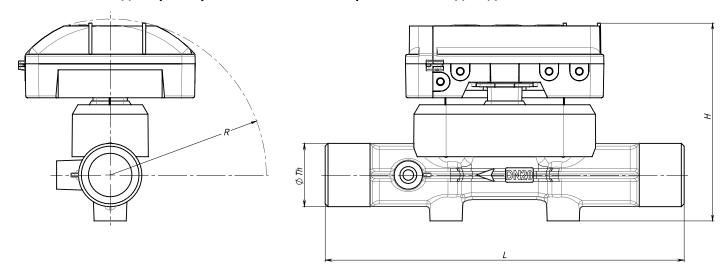
6 Габаритные размеры

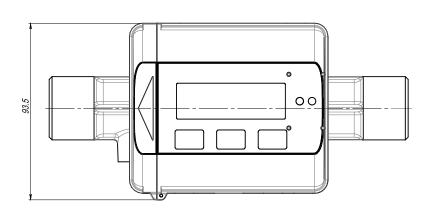

6.1




Установка на расходомерном участке

6.2 Расходомерные участки DN20...DN100 с фланцевым подсоединением





Тип РУ	L, mm	D, mm	D1, mm	d, mm	Количество	S, MM	R, mm
					отверстий		
020F	190	105	75	14	4	90	83
025 (F, H)	260	115	85	14	4	100	85
032F	260	140	100	18	4	115	87
040F	300	150	110	18	4	125	91
050F	270	160	125	18	4	_	100
065F	300	185	145	18	8	-	115
080F	300	200	160	18	8	_	120
100F	360	220	180	18	8	_	125

6.3 Расходомерные участки DN15...DN40 с резьбовым подсоединением

Тип РУ	L, MM	R, MM	H, MM	Th, мм
015 (A , C	110	83	105	G ¾ B
020 (A, C, D	130	83	105	G 1 B
020 G	190	83	105	G 1 B
025 (A, C, D)	160	85	110	G 1 ¼ B
025 (G, E)	260	85	110	G 1 ¼ B
032G	260	87	116	G 1 ½ B
040G	300	91	124	G 2 B

7 Комплектность

Комплект поставки счетчиков соответствует приведенному в таблице: Таблица 7.1

Наименование и условное обозначение	Количество	Дополнительная информация
Теплосчетчик S1H	Комплект	Исполнение и комплектность - в
		соответствии с заказом
Электронный блок S1H, с неотсоединяемыми	Комплект	См. Примечания 1, 2, 3.
кабелями от расходомерного участка		
Упаковка	Комплект	
Модем		По отдельному заказу
Тройник или шаровый кран		По отдельному заказу
Инфракрасная оптоэлектронная головка iRDA		По отдельному заказу
Щиток приборный		По отдельному заказу
Теплосчетчики S1H. Руководство по эксплуата-	1 экз.	
ции.		
Запасные части, инструменты и принадлежно-		Состав и количество по отдель-
сти (ЗИП)		ному заказу, см. Прим .3

Примечания.

- 1. РУ поставляются с фитингами, прокладками и крепежом в соответствии с рисунками расходомерных участков
 - 2. Поставка внешнего ТСП производится в соответствии с заказом:
 - для приборов с РУ 15, 20,25 ТСП оснащается переходником, прокладкой и штуцером
 - для приборов с РУ32...100 ТСП оснащаются втулкой, гильзой, прокладкой
 - 3. В состав ЗИП могут входить комплекты изделий, перечисленных в Таблица 7.1.

8 Монтаж

8.1 Требования к монтажу

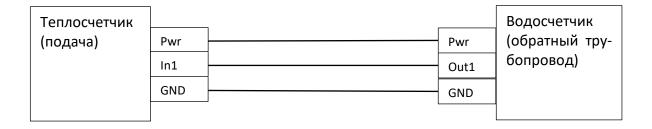
Перед монтажом счетчика необходимо промыть систему для того, чтобы удалить из нее крупные куски окалины, камни, ... Промывку нужно делать с ремонтной вставкой.

При установке РУ необходимо использовать только новые уплотнения, входящие в комплект поставки.

Перед затягиванием резьбовых соединений нужно убедиться, что ход резьбы достаточен для уплотнения.

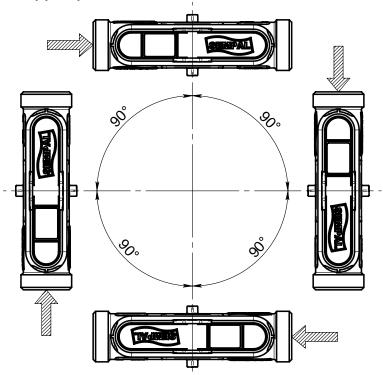
Для упрощения обслуживания счетчика рекомендуется установить шаровые краны до- и после счетчика.

Расположение РУ в подаче или обратке определяется по индикатору счетчика (подсвечивается указатель над обозначением обратки) или по конфигурации счетчика, которую также можно увидеть на индикаторе.


Рабочие условия

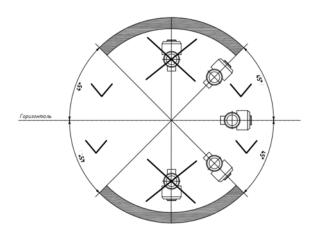
Температура окружающей среды	555 °C (установка в помещении)
	Для максимального срока службы батареи – не выше 30°C
Температура теплоносителя	2150 °C при установке вычислителя на стене
	1590 °C при установке вычислителя на РУ
Давление в системе	116 bar

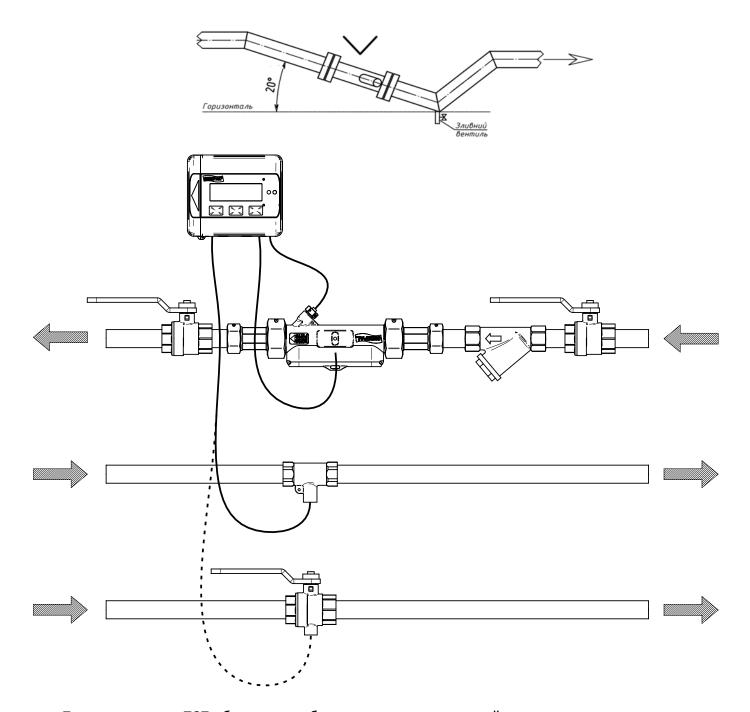
Внимание! Для расходомеров до DN25 включительно установка сетчатого фильтра механической очистки перед РУ является **обязательным**.


8.2 Подключение компонентов счетчика для вариантов 4 и 5

В этих вариантах поставки счетчик обратного потока подключается к импульсному входу 1, который сконфигурирован как активный вход.

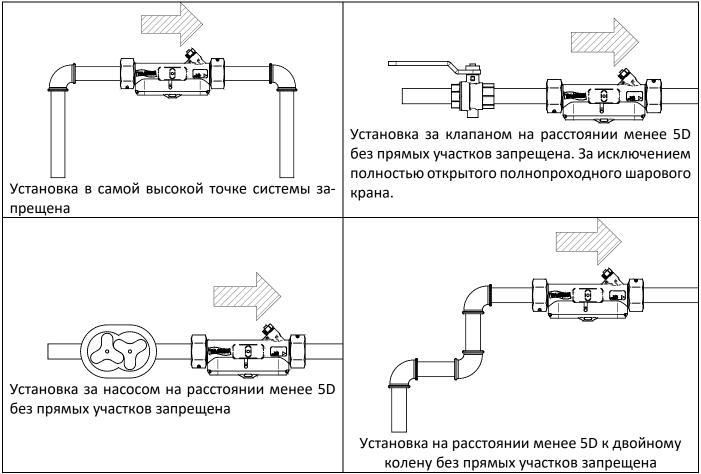
Rev. 1.53 25


8.3 Расположение РУ в трубопроводе


РУ может быть установлен вертикально, горизонтально, либо под любым произвольным углом. РУ может располагаться в нисходящем потоке, если удовлетворяется условие по минимальному давлению на выходе РУ — не менее 2 бар.

Степень очищения теплоносителя/воды в системе может вызывать образование накипи, видимого осадка, грязи на рабочих поверхностях датчиков расхода. Необходимл избегать положений РУ, при которых на рабочих поверхностях датчиков может образовываться осадок, поэтому:

- для РУ DN15...DN40 с резьбовым соединением при установке РУ, капример, горизонтально он должен быть наклонен относительно оси потока на любой угол в зонах $\pm 45^{\circ}$, как показано на рисунке. Установка в зонах, помеченных жирными линиями, запрещена.


— для РУ DN20...DN100 с фланцевым соединением участок трубопровода, который выбирается для врезки, должен располагаться в горизонтальной плоскости (отклонение от горизонтали в границах 0°...20°, смотри рисунок). Втулки с датчиками расхода и ось потока расположены в одной плоскости. Допускается поворот этой плоскости относительно оси потока на ±20°,

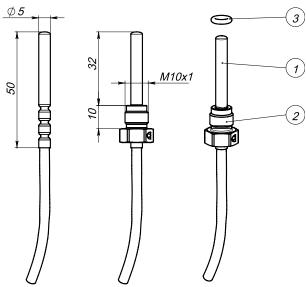
Пример монтажа ТСП обратного трубопровода с помощью тройника или шарового крана.

8.4 Требования к прямым участкам

ВНИМАНИЕ! Все типы РУ с резьбовым соединением или с фланцевым соединением DIN 1092 (табл. П. 4.1) при установке не требуют прямых участков до- и после РУ.

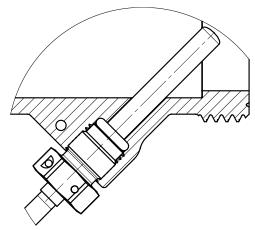
Прямые участки требуются только в случае сильного возмущения потока перед РУ. К таким возмущениям относятся наличие насоса, двойного поворота в разных плоскостях, наличие запорной арматуры (за исключением полностью открытого полнопроходного шарового крана).

Внутренний диаметр прямолинейного участка не должен отличаться более, чем на ±5% от номинального значения DN.

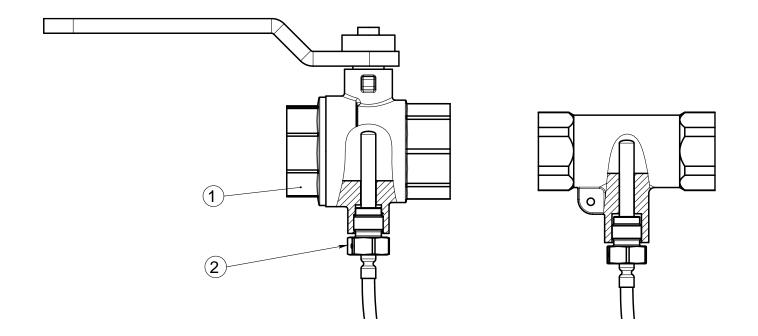

8.5 Установка ТСП

Для измерения тепла прибор использует два ТСП.

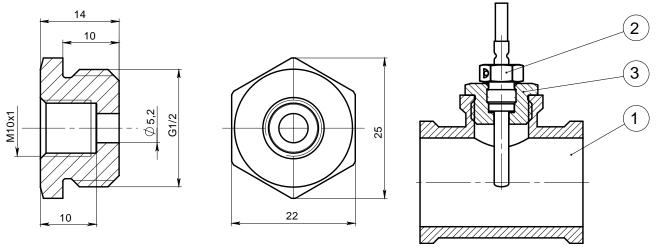
Одно из них Т1 (с красным флажком) **всегда** устанавливается в трубопроводе подачи, другое Т2 (с синим флажком) **всегда** устанавливается в обратном трубопроводе.


Если прибор сконфигурирован для установки в подающем трубопроводе, то T1 устанавливается там же, где расходомерный участок. При учете тепла T1 будет показывать температуру выше, чем T2, а при учете холода T1, соответственно, ниже, чем T2.

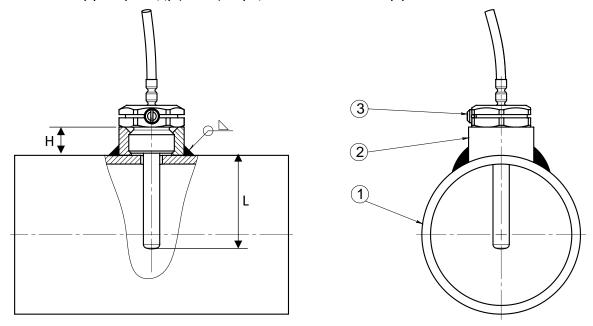
8.5.1 Установка ТСП с длиной кабеля до 3 м включительно (двухпроводный неотсоединяемый кабель)



1 – ТСП, 2 – держатель ТСП, 3 – уплотнительное кольцо


Для DN15...40 установка T1 предусмотрена конструкцией внутри расходомерного участка как показано на рисунке.

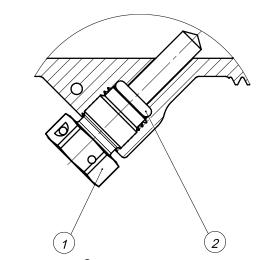
Т2 должен устанавливаться в специализированные фитинги для РУ15...25, такие как VTr.250 — тройник, VTr.424 — переходник, VT. 247 - шаровой полнопроходной кран с резьбой для подключения ТСП компании VALTEC (поз.1) или любой аналог с таким же посадочным местом для ТСП. Для установки в вышеперечисленных фитингах не требуется дополнительной герметизации, уплотнитель и держатель ТСП (поз.2) идут в комплекте поставки.



Также ТСП может устанавливаться в рядовой тройник, типа VTr. 750 (поз.1), для этого используется специальный переходник (поз.3), в который непосредственно вкручивается держатель ТСП (поз.2).

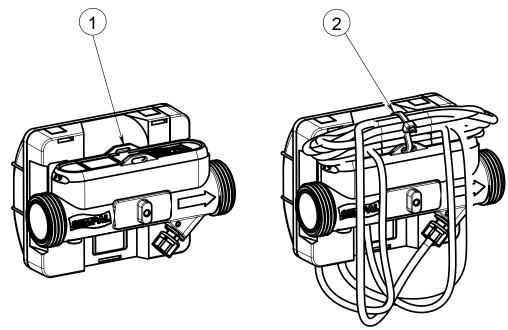
Данный переходник требует дополнительных уплотнительных материалов у монтажника (лента Фум, нить, пакля, паста, резьбовой герметик)

Установка ТСП в трубопровод DN32...100 производится с помощью защитной гильзы (поз.3) и приварной бобышки (поз.2) соответствующего размера, которые включены в комплект поставки. Приварка бобышки к трубопроводу (поз.1) осуществляется по месту установки.


Зависимость размеров гильзы и бобышки от диаметра трубопровода:

	DN32	DN40	DN50	DN65	DN80	DN100
Размер L гильзы, мм	43	43	43	43	90	90
Размер Н бобышки, мм	28	28	17	17	43	43

В комплекте с бобышкой и гильзой идут также два уплотнительных кольца.


При использовании гильзы необходимо обеспечить безвоздушный контакт дна защитной гильзы и ТСП путем заполнения зазоров высокотемпературным теплопроводящим веществом (например, трансформаторным маслом, силиконовой смазкой или термопастой).

Если Т1 из комплекта поставки DN15...40 устанавливается отдельно (не в расходомерный участок), в отверстие РУ устанавливается заглушка из комплекта поставки счетчика.

1 - заглушка, 2 – уплотнительное кольцо

8.6 Укладка кабелей

Укладка кабелей от электронного блока

- 1 место укладки кабеля
- 2 пластиковая стяжка из комплекта поставки счетчика

8.7 Ввод в эксплуатацию

После завершения монтажа необходимо заполнить систему водой и настроить вычислитель для работы в текущей конфигурации узла учета.

8.7.1 Заполнение системы

Открыть задвижки, проверить систему на герметичность и удалить из системы воздух.

Удаление воздуха необходимо выполнять до тех пор, пока не исчезнет индикация ошибок измерения расхода и отображаемый на индикаторе расход не стабилизируется.

После этого можно опломбировать все узлы теплосчетчика.

8.7.2 Настройка вычислителя

При выпуске вычислитель установлен в транспортный режим (п. 9.2.1). Этот режим эквивалентен режиму **Setup** и отличается от него только пониженным энергопотреблением.

В этом режиме можно редактировать параметры установки прибора.

Для ввода в эксплуатацию необходимо установить следующие параметры:

- режим учета тепла (тепло, холод или тепло и холод)
- единицы отображения тепла
- единицы отображения расхода
- отчетную дату месяца (число отчета)
- сконфигурировать импульсные входы, если они есть и должны использоваться
- настроить тарификацию, если она требуется
- для вариантов поставки 4 и 5 установить параметры импульсного входа для второго канала расхода
 - для варианта 4 задать параметры температуры холодной воды.

После завершения конфигурирования прибора, когда правильность всех введенных данных проверена, нужно выйти из режима установки, как указано в описании меню. При этом прибор переходит в нормальный режим работы и начинается накопление интегральных параметров и архива.

Последующий вход в режим Setup возможен только так, как описано в п. 3.2.3.

8.8 Обслуживание

- **8.8.1** После установки счетчика недопустимо проведение сварочных работ или замораживания счетчика. Для проведения сварочных работ счетчик должен быть демонтирован.
- **8.8.2** Запрещается демонтаж датчиков расхода из расходомерного участка. В этом случае теряется гарантия.
- **8.8.3** В случаях, когда расходомерный участок требует чистки от наслоений, он должен быть демонтирован и очищен от осадков с периодичностью, определяемой местными условиями.

Rev. 1.53 33

9 Вычислитель

9.1 Выполнение измерений

Цикл измерения счетчика состоит из двух независимых циклов — цикла интегрирования и цикла измерения температуры. Цикл интегрирования — это периодичность, с которой производится суммирование данных в накопительных счетчиках.

Цикл измерения температуры в нормальном режиме измерения всегда равен 32 секунды.

Цикл интегрирования может быть изменен в процессе установки счетчика (см. п.5.3). К циклу интегрирования привязан цикл измерения расхода:

Периодичность интегрирования,	Периодичность измерения расхода,
сек	сек
2	0.5
4	1
8	1
16	2

При отгрузке устанавливается цикл интегрирования, равный 16 секундам. Периодичность измерения расхода при этом будет 1 раз в 2 секунды.

При установке более коротких циклов интегрирования следует учитывать, что это сократит срок службы батареи.

9.1.1 Вычисление энергии

Для вычисления энтальпии используются формуляция IAPWS-97.

Энтальпия рассчитывается для давления 16 bar.

Для вариантов поставки 2 и 5 энергия Е вычисляется по формуле:

$$E = \sum M \cdot (H_1 - H_2) \tag{9.1}$$

где М – масса теплоносителя

 H_1 и H_2 — соответственно энтальпии для подающего и обратного трубопровода как функции от температур.

Для варианта 2/1 формула выглядит так:

$$E = \sum M \cdot (H_2 - H_1) \tag{9.2}$$

где М – масса теплоносителя

 H_2 и H_1 — соответственно энтальпии для подающего и обратного трубопровода как функции от температур.

Для варианта поставки 4 энергия Е вычисляется по формуле:

$$E = \sum M_1 \cdot (H_1 - H_C) - \sum M_2 \cdot (H_2 - H_C)$$
 (9.3)

Здесь:

M1 и M2 — измеряемые массы для подающего (ультразвук) и обратного (импульсный вход) расходомеров.

H1 и H2 – энтальпии воды для подающего и обратного трубопровода

НС – энтальпия холодной воды.

Упрощенные схемы узлов учета для различных вариантов поставки приведены в Приложении А.

Все внутренние расчеты производятся в GJ, отображение энергии на индикаторе в других единицах измерения производится путем следующих вычислений:

E[MWh] =	E[GJ] * 0.27778
E[kWh] =	E[GJ] * 277.778
E[GCal] =	E[GJ] * 0.23885

9.2 Режимы работы счетчика

Имеется несколько режимов работы счетчика:

- транспортный
- нормальный
- установка (Setup)
- поверка (Test)

9.2.1 Транспортный режим

Этот режим устанавливается при выпуске счетчика. Он предназначен для максимального сокращения потребления.

Транспортный режим эквивалентен режиму Установки (**Setup)**, за исключением периодичности измерений и работы индикатора.

В этом режиме цикл интегрирования и цикл измерения температуры равны 60 секундам. Индикатор погашен полностью. При нажатии любой кнопки индикатор включается. Через 5 минут, если не было нажатий кнопок, он выключается.

Когда появляется возможность корректно измерить расход (РУ заполнена водой), периодичность измерений становится, как в нормальном режиме работы.

Если в течение 5 минут фиксируется отсутствие воды в РУ, счетчик опять переходит в транспортный режим.

Нахождение в этом режиме не ограничено по времени.

9.2.2 Нормальный режим

Это основной режим работы прибора.

В этом режиме прибор оказывается после ввода его в эксплуатацию. Производится накопление всех интегральных параметров (с учетом тарификации) и архивирование данных.

Цикл интегрирования равен установленному пользователем значению. Цикл измерения температуры равен 32 секунды.

Цифровая строка индикатора отображается постоянно.

9.2.3 Режим Установка (Setup)

Этот режим предназначен для первоначальной настройки счетчика.

Цикличность измерений в нем соответствует цикличности нормального режима.

В этом режиме интегральные параметры накапливаются, но не сохраняются. То есть, после выхода из этого режима интегральные параметры будут иметь те же значения, что и непосредственно перед входом в этот режим.

Архив не ведется.

Журнал действий пользователя ведется.

Длительность нахождения в этом режиме – 2 часа без нажатия кнопок. По истечении этого времени прибор автоматически выйдет в нормальный режим работы. Если внесенные изменения требуют очистки архива и сброса интегральных параметров, они будут выполнены автоматически без дополнительных запросов пользователя.

9.2.4 Режим Поверка (Test)

Этот режим предназначен для поверки счетчика.

В нем цикл интегрирования равен 2 секунды, а периодичность измерения расхода — 2 раза в секунду. Цикл измерения температуры равен 2 секунды.

Это сделано для ускорения процесса поверки.

В этом режиме интегральные параметры не сохраняются. То есть, после выхода из него интегральные параметры восстанавливают те значения, которые были перед входом в этот режим.

Длительность нахождения в этом режиме — 8 часов без нажатия кнопок. По истечении этого времени прибор автоматически выйдет в нормальный режим работы.

9.3 Функции счетчика

9.3.1 Журнал

Счетчик ведет журнал действий пользователя, в который заносятся все, что может повлиять на результат измерений. Запись журнала включает в себя дату события и его описание.

В журнал заносятся следующие события:

- факт входа и выхода в/из режимов Setup и Test
- редактирование любого из параметров при нахождении в режиме Setup

Глубина журнала – 100 вхождений.

Кроме того, каждое вхождение в служебные режимы инкрементирует соответствующий счетчик вхождений. Значения этих счетчиков можно посмотреть на индикаторе и прочитать в текущем состоянии через любой из доступных интерфейсов.

9.3.2 Комбинированный учет тепло/холод

В этом режиме переключение между учетом тепла или холода происходит автоматически, в зависимости от знака разности температур подачи и обратки.

При T1 > T2 происходит учет тепла, при T1 < T2 — учет холода.

Тепло и холод суммируются в независимых ячейках.

Тепловая мощность отображается со знаком. Знак "+" соответствует нагреву, знак "-" - охлаждению.

9.3.3 Максимальные значения

Счетчик фиксирует максимальные значения расхода, мощности нагрева и мощности охлаждения. Эти значения помещаются во все типы архивов. То есть, хранятся максимальные значения за час, сутки, месяц и год.

Максимальные значения вычисляются как максимум по результатам усреднения за фиксированный интервал времени. Возможные значения интервала усреднения: 1, 2, 3, 4, 5, 10, 15, 20, 30 минут. При отгрузке устанавливается значение 30 минут.

9.3.4 Архивирование

При нахождении в нормальном режиме счетчик ведет следующие архивы:

Тип архива	Глубина	
Почасовой	1680 часов (70 суток)	
Посуточный	500 суток	
Помесячный	36 месяцев (3 года)	
Годовой	16 лет	

В архивы помещается следующая информация:

- дата
- объем и масса
- средневзвешенная температура для подачи и обратки
- температура холодной воды (для варианта поставки 4)
- энергия нагрева и охлаждения
- тарифные счетчики (4 шт) (если используются)
- объемы по импульсным входам (если используются)
- максимальные значения объема, тепла и холода
- коды и длительности ошибок, зафиксированных за интервал времени, соответствующий типу архива.

Получение отчетных ведомостей, распечаток архивов, журнала событий, текущего состояния может быть выполнено с помощью бесплатной программы "Device Manager.Net".

9.3.5 Средневзвешенная температура

Для того, чтобы можно было посчитать энергию по данным архива, в архив помещается не средняя температура, а, так называемая, средневзвешенная температура.

Она вычисляется по формуле:

$$\overline{t} = \frac{\sum_{i} t_{i} \times M_{i}}{\sum_{i} M_{i}} \tag{9.4}$$

где і – индекс текущего измерения

t_і – температура текущего измерения

Mi – масса или объем текущего измерения – накопленная масса со времени окончания предыдущего измерения

9.4 Обработка ошибок

В процессе работы счетчик постоянно контролирует корректность выполняемых измерений. В случае возникновения ошибок они отображаются в основной части индикатора. Отображение значения измеряемого параметра в этом случае чередуется с отображением кода ошибки с интервалом в 4 секунды. 4 секунды отображается измеряемый параметр, затем 4 секунды отображается код ошибки. Если есть сразу несколько ошибок, они отображаются поочередно.

Пример отображения ошибки

Error 112

Код ошибки состоит из трех групп цифр (слева направо):

- группы ошибки
- номер ошибки
- номер канала, в котором произошла ошибка

В приведенном примере код ошибки указывает на следующее: группа ошибки – измерение температур (1), код ошибки 1 (обрыв ТСП), канал 2 (ошибка произошла в ТСП2).

Просмотреть более развернутое описание ошибки можно в меню прибора. В этом случае в строке меню отображается текст описания ошибки, а на основном экране – код ошибки.

Коды ошибок:

Коды ошибок:				
Информация	Текст в строке	Описание		
на индикаторе	меню			
Error111	Обрыв ДТ1	Обрыв датчика температуры 1 (подача)		
Error112	Обрыв ДТ2	Обрыв датчика температуры 2 (обратка)		
Error121	Замыкание ДТ1	Замыкание датчика температуры 1 (подача)		
Error122	Замыкание ДТ2	Замыкание датчика температуры 2 (обратка)		
Error131	Коэффиц. ДТ1	Ошибочные коэффициенты калибровки ДТ1		
Error132	Коэффиц. ДТ2	Ошибочные коэффициенты калибровки ДТ2		
Error141	ДТ1 ниже допуска	Температура ДТ1 ниже допустимой – ниже -49 °C		
Error142	ДТ2 ниже допуска	Температура ДТ2 ниже допустимой – ниже -49 °C		
Error151	ДТ1 выше допуска	Температура ДТ1 выше допустимой – выше +150 °C		
Error152	ДТ2 выше допуска	Температура ДТ2 выше допустимой – выше +150 °C		
Error311	Канал расхода	Нет воды, засорение измерительного канала РУ, отсутствие		
		сигнала датчиков расхода (см. п. 10.2)		
Error321	Низкий сигнал	Низкий уровень сигнала датчиков расхода (см. п. 10.2)		
Error331	Темпер. РУ	Невозможно определить температуру воды в РУ		
Error341	Большая скор. РУ	Расход выше допустимого		
Error351	Обратный поток	Обратный поток в трубопроводе		
Error361	Обрыв имп. вх.	Обрыв кабеля импульсного входа (для варианта 4 и 5)		
Error411	tобр > tпр	Температура обратки выше, чем температура подачи более, чем на 2°C		

Информация	Текст в строке	Описание		
на индикаторе	меню			
		Только в режиме учета нагрева.		
Error421	tпр > tобр	Температура подачи выше, чем температура обратки более,		
		чем на 2 °C		
		Только в режиме учета холода		
Error431	txв > tпр	Температура холодной воды выше, чем температура подачи.		
		Только для варианта поставки 4		
Error441	txв > tобр	Температура холодной воды выше, чем температура об-		
		ратки.		
		Только для варианта поставки 4		

При любой из ошибок вычисление тепла прекращается

9.4.1 Системные ошибки

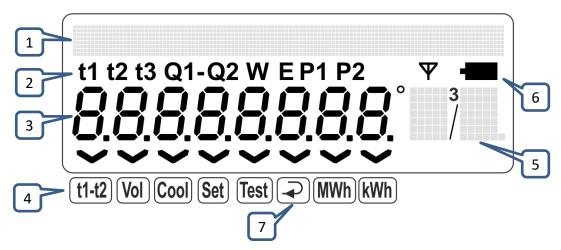
Системные ошибки — это ошибки аппаратуры вычислителя, которые делают измерения полностью невозможными и не могут быть исправлены на месте. Для устранения системных ошибок (неисправностей, вызывающих системные ошибки) прибор должен быть отправлен на завод-изготовитель.

Отображаются системные ошибки на индикаторе следующим образом:

595Err 10

Цифра обозначает номер ошибки.

9.4.2 Установка даты и времени


Прибор отгружается с установленной датой и временем, соответствующими часовому поясу страны поставки.

При необходимости установка даты и времени производится через программу **SmpSetup**. Если дата не установлена, на индикаторе отображается следующая надпись

no dALE

9.5 Индикатор и клавиатура

9.5.1 Индикатор

1 – Строка меню

5 – Отображение единиц измерения

2 – Отображаемая величина

6 – Признак разряда батареи

3 - Основной экран

7 – Признак установки в обратном трубопроводе

4 – Индикаторы режимов

Индикатор делится на две части: основной экран и строку меню.

Основной экран работает всегда (за исключением транспортного режима), а строка меню отображается только при начале работы с меню. Меню остается активным в течение 2 минут без нажатия кнопок. Если через 2 минут кнопки не нажимались, строка меню гаснет и прибор возвращается в основной режим отображения.

В зависимости от страны поставки строка меню может быть на английском, украинском или русском языках.

Индикаторы режимов в нижней части индикатора расширяют возможности отображения основного экрана индикатора. Так, при отображении энергии охлаждения будет светиться **E** в строке отображаемых величин и индикатор режима над надписью **Cool**.

9.5.2 Клавиатура

Счетчик имеет клавиатуру, состоящую из трех кнопок: "Вправо", "Вниз" и "Влево".

При навигации по меню в левой части строки отображается номер пункта меню. Номер каждого следующего вложения меню (следующий уровень меню) отделяется от предыдущих точкой.

9.6 Меню управления счетчиком

Управление прибором производится с помощью длительных, трех — пятисекундных, либо коротких, одно — двухсекундных нажатий кнопок на передней панели прибора.

Длительные нажатия используются в следующих трех ситуациях:

	Переходы между заголовками
	Переход из любого пункта меню в пункт отображение энергии (E) основного меню
V	Переход из любого пункта меню на заголовок текущей ветки

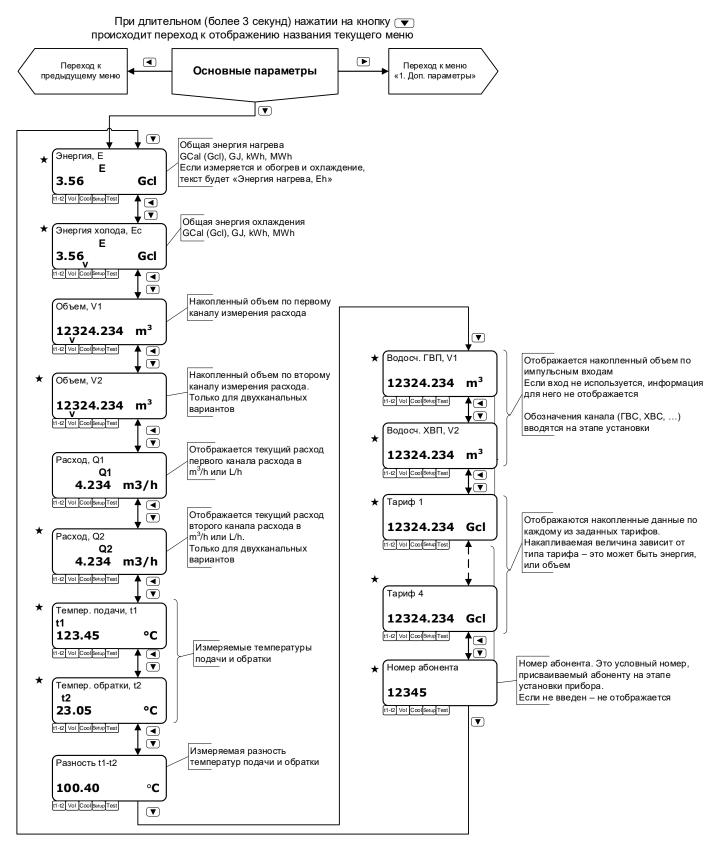
При коротких нажатиях происходит следующее:

- кнопка «Вниз» переход к следующему по порядку пункту меню;
- кнопка «Влево» возврат к предыдущему пункту (если надо что-то перепроверить, либо переустановить предыдущее значение);
- при выборе одного параметра из списка, состоящего из трех и более позиций: кнопка «Вправо» начало перебора, «Вниз» поочередный перебор, «Влево» фиксация выбранного параметра;
- при выборе одного параметра из двух: «Вниз» поочередный перебор, переход «Влево» или «Вправо» в соответствии с указаниями на схеме производится с последним выбранным параметром;

Поразрядное редактирование числа.

- кнопка «Вправо» начало редактирования очередного разряда (мигание с частотой 1с),
- кнопкой «Вниз» поочередный перебор цифр редактируемого разряда, после появления нужной цифры кнопкой «Вправо» переход к следующему разряду;
 - завершение редактирования числа нажатие кнопки «Влево»;

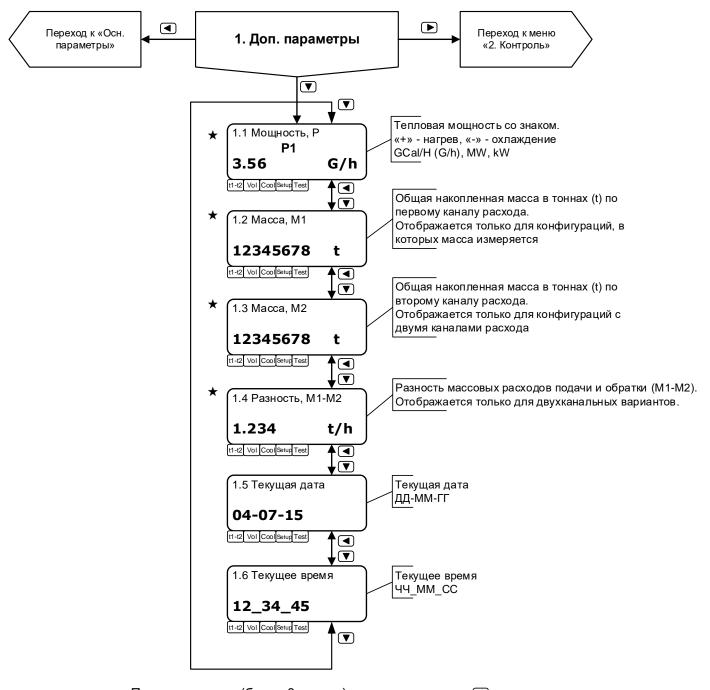
9.6.1 Краткое описание меню


Меню «**Контроль**» позволяет представителю обслуживающей, либо инспектирующей, организации проверять правильность установки параметров учета. Пункты 2.1, 2.2 помогают оценить факты разрешенного, либо несанкционированного доступа к этим параметрам; п. 2.9 — конфигурация прибора; п. 2.14 используется, если необходимо передать текущую информацию с прибора в специальном формате.

Меню «Установка» используется для установки конфигурации счетчика и ввода его в учет

ВАЖНО! Выход из меню «Установка» требует от установщика повышенного внимания, поскольку при каждом вводе прибора в учет увеличивается на единицу количество вхождений в режим «Установка», а каждое несанкционированное, или ошибочное вхождение может расцениваться инспектирующими органами как попытка фальсификации. При выполнении этого пункта установщик имеет возможность:

- вернуться в начало меню, если надо что-то поправить,
- перед вводом в учет сохранить, либо обнулить («Выход без сброса», или «Выход со сбросом») ранее накопленные параметры,
- наконец, непосредственно перед вводом в учет, при появлении на экране восклицательного знака, если есть уверенность, что ранее все сделано верно, произвести выбор «Да» нажав кнопку «Вправо»; таким образом прибор будет введен в учет, и выведен из состояния **Setup**.

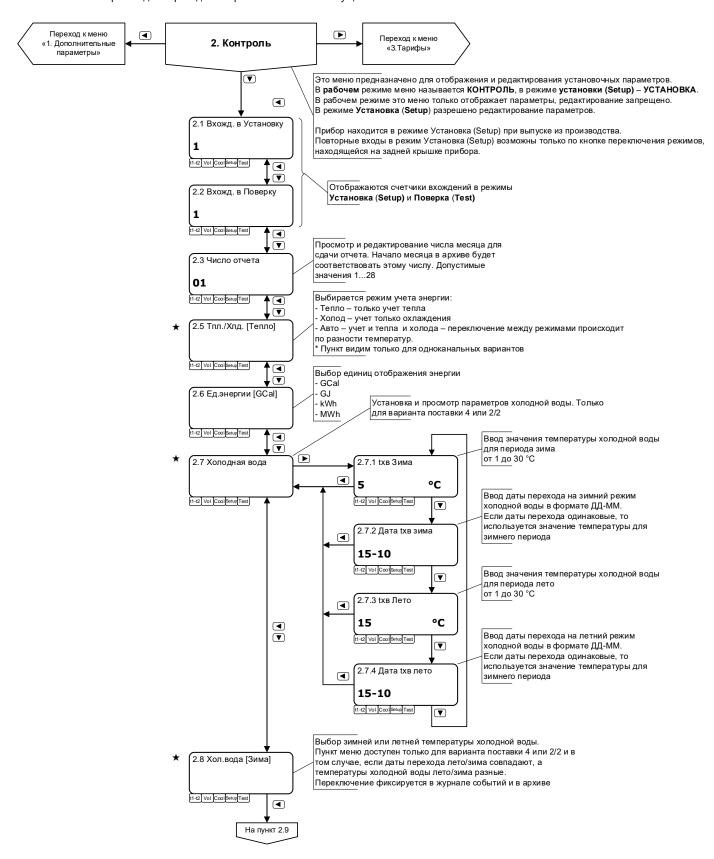

9.7 Отображение в основном режиме

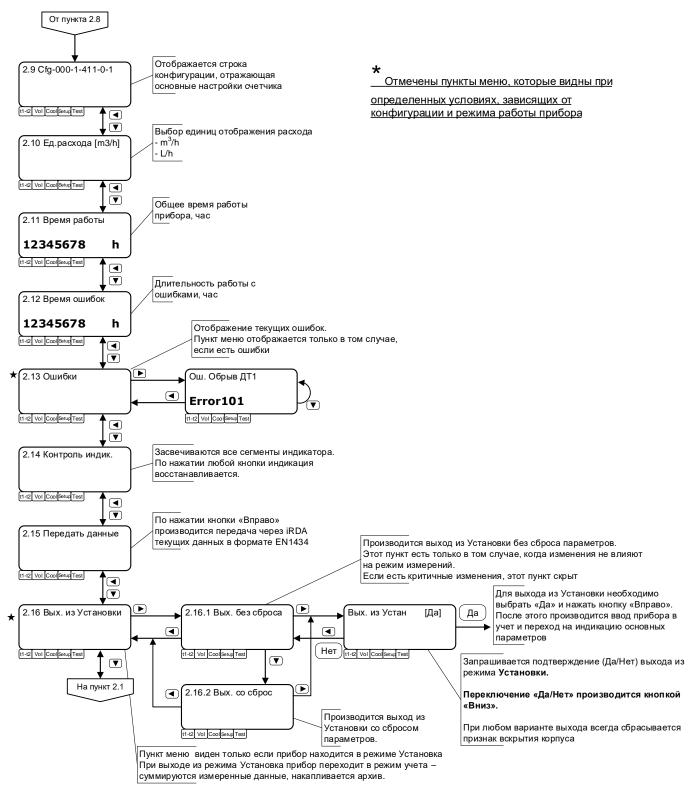
*
Отмечены пункты меню, которые видны при определенных условиях, зависящих от конфигурации и режима работы прибора

9.8 Меню Дополнительные параметры

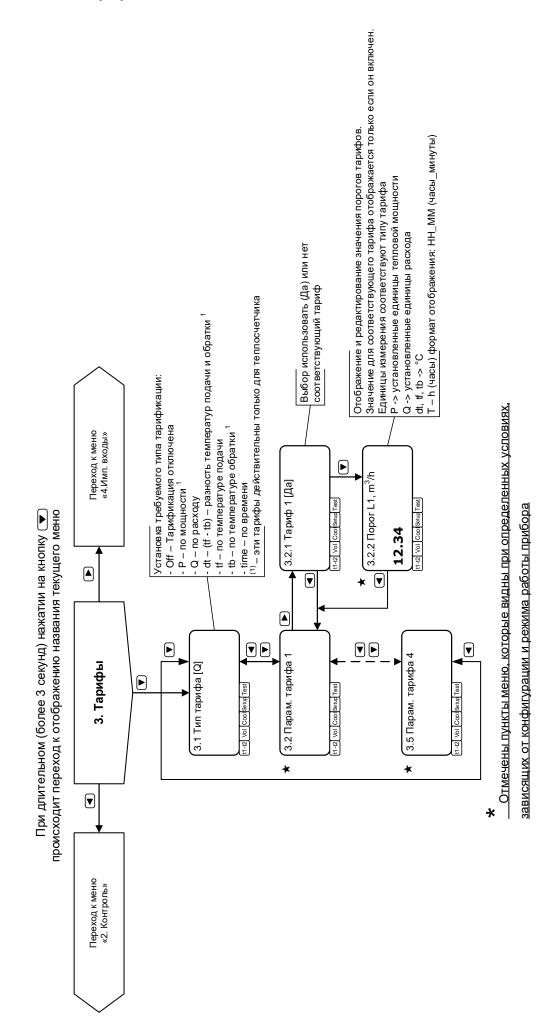
При длительном (более 3 секунд) нажатии на кнопку троисходит переход к отображению названия текущего меню

При длительном (более 3 секунд) нажатии на кнопку **◀** происходит переход к отображению основных параметров

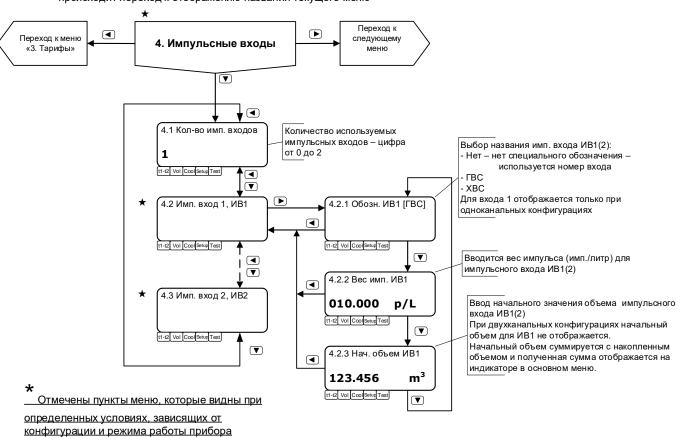

★ Отмечены пункты меню, которые видны при


определенных условиях, зависящих от конфигурации и режима работы прибора

9.9 Меню Контроль (Установка)


Если прибор находится в нормальном режиме, меню называется "**Контроль**", а если в режиме Установка (Setup), то меню называется "**Установка**"

При длительном (более 3 секунд) нажатии на кнопку
происходит переход к отображению названия текущего меню


При длительном (более 3 секунд) нажатии на кнопку происходит переход к отображению основных параметров

При длительном (более 3 секунд) нажатии на кнопку ◀ происходит переход к отображению основных параметров

9.11 Меню Импульсные входы

При длительном (более 3 секунд) нажатии на кнопку 🔻 происходит переход к отображению названия текущего меню

При длительном (более 3 секунд) нажатии на кнопку <a> происходит переход к отображению основных параметров

10 Техническое обслуживание

10.1 Выполнение обслуживания

Техническое обслуживание осуществляется представителем обслуживающей организации. Во время выполнения работ по техническому обслуживанию необходимо выполнять меры безопасности, приведенные в разделе 2.

Регламентируется два вида технического обслуживания счетчиков:

Техническое обслуживание №1 проводится по окончании отопительного сезона и включает внешний осмотр и проверку работоспособности.

При техническом обслуживании №1 визуально проверяются:

- отсутствие течи в местах монтажа составных частей счетчиков в трубопровод;
- надежность контактных соединений;
- отсутствие сколов и трещин на деталях из пластмассы;
- целостность изоляции соединительных кабелей;
- возможность вывода измерительной информации на внешние устройства.

Если теплоноситель или вода из местного водопровода недостаточно очищены (образуют накипь, видимые осадки...) рекомендуется производить очистку РУ и фильтра с периодичностью, определяемой местными условиями (см. п. 10.2).

Техническое обслуживание №2 счетчиков проводится перед выполнением периодической поверки счетчика.

При техническом обслуживании №2 производятся:

- операции, предусмотренные техническим обслуживанием №1;
- осмотр внутренней поверхности РУ на предмет наличия отложений;
- в случае обнаружения существенных отложений требуется разборка и очистка РУ, демонтаж и очистка ТСП (п. 10.2).

10.2 Очистка РУ

При несоответствии систем очистки теплоносителя (сетевой и питьевой воды) требованиям нормативов по качеству воды (ДСТУ 4808:2007, ДСТУ 7525:2014, Правила технической эксплуатации тепловых установок и сетей, утвержденные Приказом Министерства топлива и энергетики Украины от 14.02.2007 № 71, и др.) на рабочих поверхностях РУ и ДР могут образовываться наслоения (налет, накипь, грязь, и т.п.), что препятствует корректной работе приборов. В таком случае РУ требует очистки от наслоений с периодичностью, определяемой местными условиями.

Критерием необходимости проведения очистки является появление на индикаторе прибора сообщения об ошибке с кодом 311 или 321 (Error 311, Error 321), п. 9.4.

На обратном трубопроводе двухканального устройства может использоваться счетчик без индикатора. В случае сомнения в исправности счетчика на обратном трубопроводе (отсутствие мгновенного расхода второго канала на индикаторе прибора первого канала или отсутствие накопления объема второго канала по данным архива) нужно с помощью iRDA головки прочитать архив счетчика второго канала и проанализировать его работу на предмет наличия ошибки с кодом 311 или 321.

Разборка и очистка РУ производится следующим образом:

- демонтировать РУ из трубопровода и произвести осмотр внутренней поверхности РУ
- при необходимости очистить внутреннюю поверхность РУ и поверхностей ДР с использованием слабых растворов щелочей или кислот (например, уксус 9%), синтетических моющих средств (оптимальным является гель Cillit Bang для сантехнических и канализационных труб)
 - затем промыть водой.

При высокой степени загрязненности может потребоваться разборка РУ. После этого обязательна поверка счетчика. Поэтому такие работы могут проводиться либо фирмой-производителем, либо сертифицированными авторизованными центрами обслуживания и поверки, и такие работы не являются гарантийными видами работ.

10.3 Поверка.

Счетчики подаются на поверку после проведения технического обслуживания №2. Межповерочный интервал — не более 4-х лет. На поверку подаются вычислители, ДР, расходомерные участки в сборе, ТСП.

10.4 Батарея.

На батарею распространяется гарантия в течение 48 месяцев как составной части прибора. В течение этого периода замена батареи может производиться при условии предъявления ее совместно с вычислителем, с которым она отгружалась.

10.4 Характерные неисправности

Перечень характерных неисправностей и методы их устранения приведены в таблице:

		• • • • • • • • • • • • • • • • • • • •	
Внешнее проявление неис-	Вероятная причина	Метод устранения	
правности			
1. Отсутствует индикация при	Полностью разряжена или не	Заменить (установить) батарею	
нажатии кнопок	установлена батарея.	питания.	
2. Счетчик не реагирует на	Неисправен вычислитель	Произвести ремонт вычисли-	
нажатие кнопок		теля	

Примечание: ремонт вычислителя и замена батареи производится специализированным подразделением предприятия-изготовителя.

11 Гарантии изготовителя

Изготовитель гарантирует работу счетчика в течение 4-х лет с момента отгрузки потребителю.

Гарантии предусматривают замену дефектных деталей и проверку работоспособности прибора на территории сервисного центра предприятия-изготовителя.

Гарантии распространяются на дефекты составных частей прибора, входящих в комплект поставки, причиной которых явились дефекты изготовления, дефекты материалов и комплектующих изделий.

Неисправный прибор необходимо доставить на предприятие-изготовитель для тестирования и ремонта.

Ни при каких обстоятельствах не следует вскрывать вычислительный блок (нарушать целостность пломб) до возврата прибора на предприятие-изготовитель.

Гарантии не предусматривают компенсации затрат на демонтаж, возврат и повторный монтаж прибора, а также любых вторичных потерь, связанных с неисправностью.

В случае выявления неисправности в период гарантийного срока потребитель должен предъявить рекламацию предприятию-изготовителю по адресу:

03062, г. Киев, ул. Рене Декарта, 11, фирма "Семпал Ко Лтд",

Тел.: +38 (044) 3371188, (044) 3551188 +38 (098) 1638888, (050) 1428888

Рекламацию на теплосчетчик не предъявляют в следующих случаях:

- установка и пуско-наладка произведена организацией, не имеющей разрешения предприятия-изготовителя на проведение данных работ;
 - нарушение сохранности пломб на блоке вычислителя;
 - истечение гарантийного срока;
- нарушение потребителем правил эксплуатации, хранения и транспортирования, предусмотренных эксплуатационной документацией;
- при наличии на рабочих поверхностях РУ и ДР отложений (налета, накипи, грязи, и т. п.), которые требуют очистки (п. 10.2)

По окончании гарантийного срока или утрате права на гарантийное обслуживание предприятие-изготовитель производит платный ремонт теплосчетчиков.

12 Хранение, транспортировка, утилизация

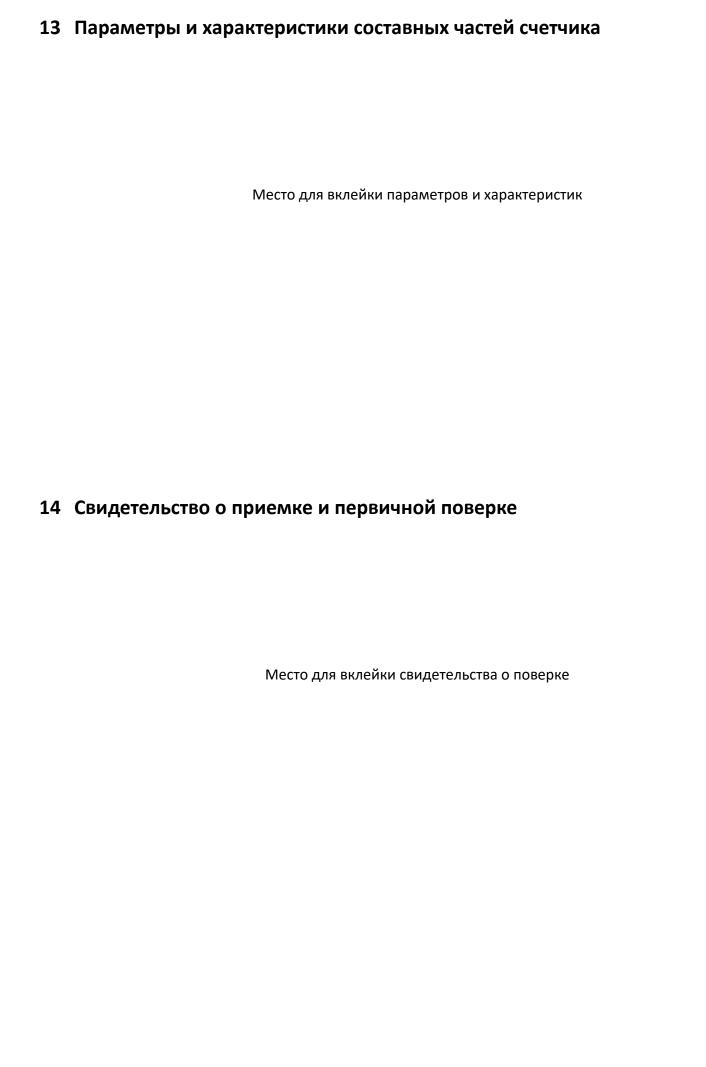
12.1 Упаковка

Упаковка (транспортная тара) выполняется в соответствии с чертежами предприятия-изготовителя.

Маркировка транспортной тары выполняется по чертежам предприятия-изготовителя и содержит манипуляционные знаки "ОСТОРОЖНО ХРУПКОЕ", "БЕРЕЧЬ ОТ ВЛАГИ", "ВЕРХ".

Составные части счетчиков упакованы в ящики предприятия-изготовителя. По согласованию с заказчиком допускается поставка РУ без транспортной тары или в таре заказчика

12.2 Условия хранения счетчиков:


В неотапливаемом хранилище срок хранения не более 5 лет при температуре окружающего воздуха от -25 °C до +60 °C без конденсации влаги.

При длительном хранении в неотапливаемом хранилище счетчики должны быть помещены в дополнительный чехол из пленки полиэтиленовой.

Счетчики допускается транспортировать всеми видами транспорта в упаковке, при условии защиты от прямого воздействия атмосферных осадков.

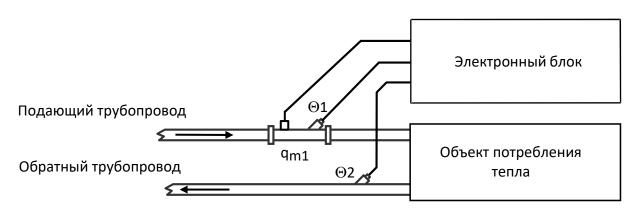
12.3 Утилизация компонентов счетчика:

Наименование	Материалы	Способ утилизации
Литиевая батарея С	Литий и тионил хлорид	Сертифицированные места хра-
	2.5 г лития	нения литиевых батарей
Печатная плата без LCD	Металлизированных стеклотек-	Извлечение металлов из печат-
	столит с установленными дета-	ных плат
	лями	
LCD (жидкокристаллический	Стекло и жидкие кристаллы	переработка ЖК индикаторов
дисплей)		
Кабеля к ТСП и ДР	Медь, фторопласт, силиконовая	Переработка кабелей
	оболочка	
Верхняя крышка корпуса	Поликарбонат	Переработка пластмасс
Нижняя крышка корпуса	Акрилонитрил-бутадиен-стирол	
Держатель корпуса	Поликарбонат	
Корпус РУ	Латунь, сталь	Переработка металлов
Упаковка	Картон	Переработка макулатуры

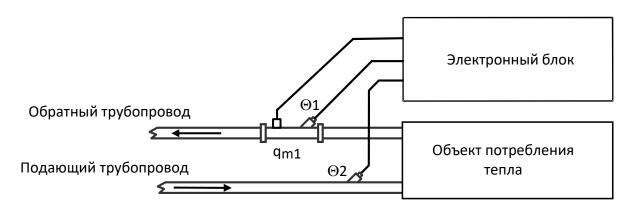
15 Сведения о вводе в эксплуатацию, ремонтах, перенастройках

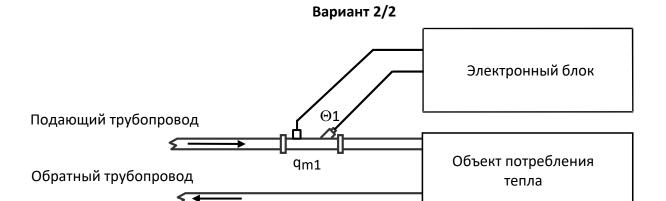
Дата	Наименование работы	Кто проводил	Подпись и оттиск клейма

16 Сведения о периодических поверках

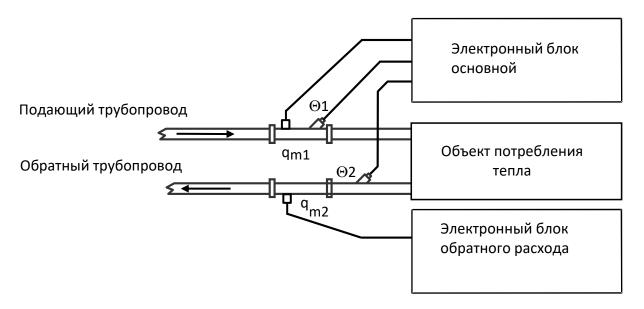

Дата поверки	Срок очередной поверки	Подпись поверителя	Клеймо
	Дата поверки		

Приложение А.


Упрощенные схемы узлов учета


Ниже приведены упрощенные схемы узлов учета для разных вариантов поставки.

Вариант 2



Вариант 2/1

Варианти 4, 5

